Warm Up:

Simplify:

$$
\begin{aligned}
& 3 \sqrt{8}+3 \sqrt{2} \\
& 6 \sqrt{2}+3 \sqrt{2} \\
& 9 \sqrt{2} \\
& \frac{4}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{4 \sqrt{5}}{5}
\end{aligned}
$$

$$
\begin{gathered}
3 \sqrt{18}-2 \sqrt{2} \\
0_{2} \\
a^{33^{3}} \\
9 \sqrt{2}-2 \sqrt{2} \\
\frac{\sqrt{5}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
\frac{\sqrt{15}}{3}
\end{gathered}
$$

10.1 - Pythagorean Theorem

Pythagorean Theorem:

$$
a^{2}+b^{2}=c^{2}
$$

In a right triangle, the side opposite the right angle is called the hypotenuse, here with length c.

The other two sides are legs, here with lengths a and b.
2.

$$
\begin{aligned}
& x \\
& a^{2}+5^{2}=13^{2} \\
& a^{2} \pm 2 / 2=16=-25 \\
& a^{2}=\sqrt{144} \\
& a=12 \text { units }
\end{aligned}
$$

$$
12^{2}+15^{2}=c^{2}
$$

$$
\begin{aligned}
144+225 & =c^{2} \\
\sqrt{369} & =c^{2}
\end{aligned}
$$

$C=19.2$ units

Investigation 2 on page 500
Converse of the Pythagorean Theorem: If the lengths of the three sides of a triangle satisfy the Pythagorean Theorem, then the triangle is a right triangle.

$$
\begin{array}{lll}
\begin{array}{l}
3 \\
a+16=5^{2} \\
3-4-5
\end{array} & & 9^{2}+10^{2}=11^{2} \\
25=25 & 5-12-13 & 81+100=121 \\
6-8-10 & 9-12-15 & 8-15-17
\end{array}
$$

